Fixed point theorems on multi valued mappings in b-metric spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-valued fixed point theorems in complex valued $b$-metric spaces

‎The aim of this paper is to establish and prove some results on common fixed point‎ for a pair of multi-valued mappings in complex valued $b$-metric spaces‎. ‎Our‎ ‎results generalize and extend a few results in the literature‎.  

متن کامل

Fixed point theorems on multi valued mappings in b-metric spaces

In this paper, we prove a fixed point theorem and a common fixed point theorem for multi valued mappings in complete b-metric spaces.

متن کامل

Remarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''

In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...

متن کامل

SOME FIXED POINT THEOREMS FOR SINGLE AND MULTI VALUED MAPPINGS ON ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES

In the present paper, a partial order on a non- Archimedean fuzzymetric space under the  Lukasiewicz t-norm is introduced and fixed point theoremsfor single and multivalued mappings are proved.

متن کامل

PPF dependent fixed point theorems for multi-valued mappings in Banach spaces

‎We prove the existence of PPF dependent coincidence points for a pair of single-valued and multi-valued mappings satisfying generalized contractive conditions in Banach spaces‎. ‎Furthermore, the PPF dependent fixed point and PPF dependent common fixed point theorems for multi-valued mappings are proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SpringerPlus

سال: 2016

ISSN: 2193-1801

DOI: 10.1186/s40064-016-1870-9